Fast and Oblivious Convolution Quadrature
نویسندگان
چکیده
We give an algorithm to compute N steps of a convolution quadrature approximation to a continuous temporal convolution using only O(N logN) multiplications and O(logN) active memory. The method does not require evaluations of the convolution kernel, but instead O(logN) evaluations of its Laplace transform, which is assumed sectorial. The algorithm can be used for the stable numerical solution with quasi-optimal complexity of linear and nonlinear integral and integrodifferential equations of convolution type. In a numerical example we apply it to solve a subdiffusion equation with transparent boundary conditions.
منابع مشابه
Fast convolution quadrature based impedance boundary conditions
We consider an eddy current problem in time-domain relying on impedance boundary conditions on the surface of the conductor(s). We pursue its full discretization comprising (i) a finite element Galerkin discretization by means of lowest order edge elements in space, and (ii) temporal discretization based on Runge-Kutta convolution quadrature (CQ) for the resulting Volterra integral equation in ...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملFree Vibration of Annular Plates by Discrete Singular Convolution and Differential Quadrature Methods
Plates and shells are significant structural components in many engineering and industrial applications. In this study, the free vibration analysis of annular plates is investigated. To this aim, two different numerical methods including the differential quadrature and the discrete singular convolution methods are performedfor numerical simulations. Moreover, the Frequency values are obtained v...
متن کاملFast convolution quadrature for the wave equation in three dimensions
This work addresses the numerical solution of time-domain boundary integral equations arising from acoustic and electromagnetic scattering in three dimensions. The semidiscretization of the time-domain boundary integral equations by Runge-Kutta convolution quadrature leads to a lower triangular Toeplitz system of size N . This system can be solved recursively in an almost linear time (O(N logN)...
متن کاملGeneralized Convolution Quadrature with Variable Time Stepping. Part II: Algorithm and Numerical Results∗
In this paper, we will address the implementation of the Generalized Convolution Quadrature (GCQ) presented and analyzed in [M. LópezFernández, S. Sauter: A Generalized Convolution Quadrature with Variable Time Stepping, Preprint 17-2011, University of Zurich (2011)] for solving linear parabolic and hyperbolic evolution equations. Our main goal is to overcome the current restriction to uniform ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 28 شماره
صفحات -
تاریخ انتشار 2006